Overview of the Neonatal Immune System

Bronwyn Williams
Pathology QLD / RCH
Brisbane

Innate vs. adaptive immunity

- **Innate immunity**
 - Evolutionarily ancient, no need for prior exposure for action
 - Effective first line of defense
 - Present in all individuals at all times
 - Immediate response (0 – 4 hours) but non-specific
 - Does not generate lasting protective immunity

- **Adaptive (acquired) immunity**
 - Kicks in later (> 96 hours)
 - Initiated if innate immune response is not adequate
 - Antigen specific immunity
 - Lasting protective immunity (Abs, memory T/B cells)
 - Humoral and cell-mediated components

Innate Immune System

- **Physical barriers**
 - Epithelial cells, mucus, tears

- **Receptors**
 - Pattern recognition type (PRR) - Toll-like, Nod-like, Mannose receptor (MR)
 - Scavenger receptors, C lectin like receptors

- **Antigen presenting cells**
 - Dendritic cells and macrophages
 - Neutrophils and monocytes
 - NK cells

- **Soluble factors**
 - Complement (see later – opsinises, direct killing – MAC, recruits cells)
 - Fibronectin (binds pathogen / activates T cells)
 - Mannose Binding lectin (binds to CHO moieties, opsinises, activates complement)
Pattern recognition receptors - major player in Innate Immune Response

- Majority of innate immune response mediated by PRRs
 - PRRs present on the surface of cells
 - Recognizes pathogen associated molecular patterns (glycoproteins, phospholipids, polysaccharides)
 - Recognises self from non self
 - Recognises live vs dying cells
- Two broad groups
 - Endocytic – binding, phagocytosis and intracellular destruction of pathogens without signalling (MR)
 - Signalling - PRR binding induces intracellular signalling that primes adaptive immunity (eg Toll / Nod)

Neonates first line of defence has a few holes

- Epithelium - Intact
- Receptors
 - Not fully clarified, some equivalent (TLR2, MBL) others lower (TLR1), can be up or down regulated.
- APC
 - Monocytes
 - impaired phagocytosis of bacteria, impaired response to some viral agents, cytokine responses less well regulated
 - Neutrophils
 - impaired adhesion and migration, reduced opsonisation and phagocytosis, altered superoxide production
 - Dendritic cells
 - reduced response to pathogens, altered cytokine production, impaired phagocytosis and cell killing
- Soluble Factors
 - Complement – variable, less than adults, more severe reduction in prems
 - Fibronectin – reduced, normal by 1 year
 - Mannose Binding Lectin – “adult levels” in term infants, low in prems

Adaptive Immune Response

- Complex interactions and feedback loops
- Includes humoral and cellular components
- Most start with pathogen ingestion by macrophages / dendritic cells
- Antigens of pathogen are processed and presented to T cells (both CD4 and CD8)
- CTL (CD8) generated – direct killing
- CD4 secrete cytokines and interact with B cells
 - Promotes B cell maturation to plasma cells
 - Immunoglobulin production occurs early if previous Ag exposure (memory B cells) delayed if new Ag

Humoral components - Immunoglobulins

- Immunoglobulins / antibodies
 - Present in plasma, body fluids and on B cell surface
 - Recognise and bind to specific antigens
 - 5 classes - IgG, A, M, E, D but IgG >75% of all antibodies
 - Actions
 - Neutralization
 - Ab bind and neutralizes bacterial toxins, bacteria and virus particles – preventing interaction with host cells, promotes ingestion by macrophages
 - Opsonization
 - Ab assists recognition by phagocytes or NK cells (ADCC) for ingestion / killing
 - Complement activation
 - Ingestion by phagocytes, upregulates T cell response, cytokines

IgG deficiency associated with significant infection risk
Production of antibodies

- Pathogen (virus or bacteria) binds to B cell
- Peptides from the pathogen are presented (MHC II) to the T cell resulting in the activation of the B cell
- B cell proliferation
- B cells differentiate into antibody-secreting plasma cells
- Produce antibodies against pathogen

Immunoglobulin in fetus / neonate

- Synthesis regulated by developmental and genetic mechanisms
- Intrinsically linked to B cell number, maturation and function
- But - production of specific IgG relies on exposure to antigens (infections)
- In utero environment such that neonates relatively protected from exposure to infection / antigens
- RESULT = Limited or no intrinsically produced specific IgG or IgM antibodies at birth

There is a back up plan!!

- Maternal IgG actively transported across the placenta
 - "passive" immunity (but only to antigens to which mother is immune)
 - protects against more common viral and bacterial infections
 - degraded over time; decline in maternal IgG titres to nadir @ 3 – 6 months postnatally
- Amount of foetal / neonatal IgG is dependent on gestational age
 - most transport is in 3rd trimester
 - total IgG in normal term neonate are higher than adult levels
- IgM, IgA, IgE and IgD do not cross placenta

So when will "the force" be with me?

- IgG
 - Increasing amounts after birth, ~ 25% of adult at 1 year
 - Response to protein antigens are good
 - Blunted response to polysaccharide antigens till 18 – 24 months
- IgM
 - Rises rapidly after birth, ~60% of adult levels @ 1 year
 - Important role in neonatal immune defence (complement interaction)
- IgA
 - Levels ~ 20% of adult in first year of life
 - Breast milk provides enteral IgA
- IgE
 - Levels related to atopy / role in primary Ag recognition
- IgD
 - Less well understood - role in primary Ag recognition
Complement System – another loop

- Consists of large group of plasma and cell surface proteins
- Induces bacterial cytolysis
- Solubilises immune complexes
- Releases of anaphylatoxins and cytokines
- Induces B cell proliferation/differentiation
- Activates T cells
- Activated by classical, alternative and lectin pathways

Complement in foetus/neonate

- Complement components are detectable from 5-6 wks gestation
- Levels increase with gestation
- > 28 weeks levels are 50 - 75% of normal adult range
- No placental transfer
- Functional aspects of complement pathway in premature and term neonates are not extensively studied
- Appears that there are limitations/reduction in activity
 - probably related to reduced levels of components
 - activation via alternate pathway or MBL
 - limited ability to activate via classical pathway (little IgM)

Cellular components of the Adaptive Immune System

- Monocytes, dendritic cells
 - Ingest and kill pathogens
 - Break these down into peptides
 - Package peptides with MHC
 - Present antigen to T cells
 - Migrate to lymphoid tissue
 - Produce cytokines
 - Stimulate T cell migration and recruitment
Monocytes, macrophages and dendritic cells

- **Monocytes**
 - Present from early gestation, but few in blood until 5 months gestation
 - Relative monocytosis at birth (term)
 - Functional differences in pathogen response, phagocytosis, killing and chemotaxis cf adult

- **Dendritic cells**
 - Normally DC have highly developed APC function
 - Detectable early in gestation
 - But fetal / neonatal DC have
 - Poor APC functionally
 - Impaired cytokine release
 - Reduced co-stimulation of T and B cells

- Developmental reasons for reduced function
 - Related to need to allow tissue senescence and remodelling without inflammation

T cells

- Activation largely via
 - Peptide / protein fragments of foreign pathogen that sit in the MHC binding cleft
 - TCR interacts with MHC 1 or 2 on APC
 - MHC I - CTLs / CD8
 - MHC II - TH 1 or 2 / CD4
 - Cytokine release
 - Activation of other cells
 - TH 1 or TH 2 dependent
 - Proliferation of T cells
 - Direct cell death

Antigen recognition by T-cells

- T₁ cells (CD4) recognize antigen presented by MHC II
 - IF gamma mediated activation of macrophages and of B cells (opsonising Ab)
 - Cell mediated Imm
 - Humoral Immunity

- T₂ cells (CD4) recognize antigen presented by MHC II
 - IL4 mediated activation of B cells (neutralising Ab)

Neonatal Lymphocytes

- T, B, NK cells produced from early gestation
- Vary with gestational age
- Number and functions differ from older child
- T cell functional differences
 - Immature T cells, predominantly naive (normalises by 2 yrs) – no memory T cells
 - Altered helper/suppressor ratios (more CD4, less CD8)
 - Impaired proliferation in response to Ag
 - Impaired Th1 response to antigen (not so good at stimulating macrophage / DC / PMNs)
 - Diminished delayed type hypersensitivity
 - Cytotoxic T cells less efficient in inducing antigen independent cellular lysis / apoptosis
Neonatal Lymphocytes

- **B Lymphocytes**
 - Can produce IgM, IgG and IgA
 - Response is qualitatively and quantitatively different to adult
 - Restricted repertoire
 - Respond to some antigens but not others
 - Low affinity Abs, mostly IgM
 - Result of intrinsic responsiveness of B cells
 - Effects of T cell functional differences or altered T suppressor ratios

- **NK cells**
 - Numbers adequate
 - But reduced lytic activity

Neutrophils

- Haematology “people” are pretty familiar with these!

PMNs in fetus and neonate – functional issues

- Present from early gestation
- Many functional differences from adults
 - Signal transduction, cell surface protein expression, cytoskeletal rigidity, oxygen metabolism, intracellular antioxidant mechanisms
 - WITH ADDED IMPAIRMENT
 - reduced levels of growth factors and inflammatory mediators
 - RESULT
 - reduced chemotaxis/migration
 - reduced adherence
 - reduced ability to recognise opsinised bacteria = reduced phagocytosis
 - impaired intracellular killing - esp Group B strep, staph aureus, pseudomonas
 - AND
 - Other illnesses eg RDS, compound defects

Not only functional problems

- Altered Neutrophil kinetics
 - reduced storage pool; more severe in prems
 - exaggerated release of available neutrophil pool in response to stimulus
 - neutrophil proliferation is maximal at baseline
 - results in a reduced ability to increase production
 - RESULT
 - less function and reserve
 - initial burst, unsustained
 - “dump and burn”
Summary – neonatal immune response

- Neonate have a “naïve” immune system
- Some aspects function better than others, eg innate functions
- Multi layered defects of proteins, cell numbers and functions
- Creates a relative “immunodeficiency” compared to older child/adult

END RESULT

- Neonates have an intrinsic susceptibility to bacterial, viral and fungal infections
- Presence of additional acquired defects greatly increase the risk

So what?

- Most babies don’t develop sepsis
- Protected in utero
- Effect of relative isolation and lack of exposure
- Protective role of breast milk

BUT!!

Case BB

- Term infant, normal pregnancy and delivery
- Noted to have tachypnoea within 2 hours of birth
- Oxygen / FBE and CXR
- Fluffy opacities in lungs
- WCC 29,000, mostly PMNs, increased band forms
- Antibiotics commenced
- Deteriorates soon after these are commenced
- Tachycardic and shut down with increasing respiratory distress
- Ventilated. Sick++, progressively deteriorates, DIC, renal failure
- Death
- Gp B Strep grown blood and surface swabs

When it goes bad, it can be really bad!

- Infected infants often deteriorate quickly
- Particularly with bacterial infections
- Diagnosis often delayed by lack of typical symptoms and signs
- Need an awareness of risk
- High index of suspicion
- Early intervention with appropriate treatment can salvage these infants
Can the haematology lab help?
Yes, a bit

- FBE – WCC, bands, IM / IT ratios
- Film
 - bands ? Bacteria esp GBS
 - * odd mononuclear cells ? Listeria
 - * blastoid reactive lymphs ? Viral ?? CMV
- Vacuolation
 - ? NEC, ??Staph Epi
 - if prominent ? Candida
- Eosinophilia
 - ? Gram negatives
- + Red cell changes (Fragmentation / haemolysis)
 - ?Gram Negative ? NEC

Interventions – what and when?

- Immunoglobulin - IVIg
 - Controversial, unclear if beneficial in treatment of sepsis
 - ~3 – 4 % reduction in sepsis without reduced morbidity / mortality
 - ? Selection bias ?? Adequate patient numbers.
 - Possibly more useful in premature, ? Prophylaxis more useful
- Granulocyte transfusion
 - Limited data Benefit, who, how often, when???
 - Difficult to get
 - Irradiation NB (GVHD); CMV risk ? Other viral infections
- GCSF
 - Safe, long term effects not known
 - May have a role if neutropenic ? Thresholds, ? Dose
 - ? role for recombinant purified component (complement), ? FFP
- ? gamma interferon
- ? MBL concentrate

Summing Up

- Be aware of the relative deficiencies of immune function in neonates
 - “Susceptibility to infection” is intrinsic
- Exposure and other acquired defects confound these issues
- Early suspicion, diagnosis and treatment are particularly important
- Broad antinfective cover may be necessary
- Unclear role of immunomodulation
 - May be beneficial in some situations???
- So hopefully a happy ending!!
TH 1 vs Th2 – what do they do?

- Still evolving understanding of responses
- Roles in different types of infections
 - Th1 – intracellular pathogens
 - Th2 – extracellular pathogens
- Different cytokines secreted, different cellular activation patterns
 - Th1 ("Cell mediated")
 - Promotes opsinising Ab (IgG1)
 - Induces cellular cytotoxicity
 - Activates macrophages
 - Th2 ("Humoral")
 - IL-4 upregulation
 - Promotes neutralising antibodies (IgG4 and IgE)
 - Stimulates eosinophils development