Infertility: Investigations and Treatment Options

Assoc Prof. Mark Bowman
MBBS, PhD, FRANZCOG, CREI
The problem of infertility

- 15% of couples actively trying to conceive will have difficulty attaining pregnancy
- Simple investigations will usually identify a cause for the majority of couples
- A range of therapeutic options are available, particularly if an identifiable cause is found
- IVF is commonly undertaken, either because it is a first line indication; a treatment where simple measures have failed or a treatment for combined fertility factors

Genea
WORLD LEADING FERTILITY
Female age and fecundity

The graph illustrates the decline in follicle units over time. At birth, the follicle units are at peak levels of 6 to 7 million. Over time, the number of follicle units decreases rapidly, reaching a lower number as time progresses. The x-axis represents time in years, starting from birth and extending to 70 years.
Two sides of the story – male and female fertility

- Female fertility can be compromised by:
 - Irregular ovulation
 - Damage / obstruction of the fallopian tubes
 - Endometriosis
 - Age

- Male fertility can be compromised by:
 - Low sperm parameters (eg. number, motility)
 - Obstruction
 - Anti-sperm antibodies
Useful basic investigations

- Semen analysis and IBT
- Ultrasound / HyCoSy
- Hormonal assessment of ovulation
- Other serology – antenatal screening
Anti-Mullerian hormone (AMH)

- Originally described in human fetal sexual differentiation
- Produced by granulosa cells of primary follicles / small follicles (not visible on ultrasound)
- A reflection of total oocyte pool
- Cycle independent
- Does not necessarily relate to egg quality
Treatment of infertility

• Significant problem – assisted conception (= IVF or related technology)

• Options outside of assisted conception
 – More time / lifestyle alterations
 – Laparoscopic surgery for endometriosis
 – Surgery to repair obstructions
 – Tablets to correct ovulation (clomiphene – Clomid)
 – Sperm donation – medical problem / social problem

• Unexplained infertility / time lapsed / no time left – assisted conception
Unexplained infertility

- Normal detailed semen analysis
- Regular ovulation
- No anatomical factors seen at HyCoSy
- No obvious immunological issues (no antisperm antibodies)
- No detectable endometriosis
- 25 – 30% of our patient group

Note: the explanation may simply be “older eggs”
ie women beyond the late 30s
Management of options for unexplained infertility

Eg. 18 months trying, 34 years old, prognosis of next 6 months

- **Fate?**
 - 2-3% chance / month
- **Clomiphene?**
 - little / no difference
- **Intrauterine insemination (IUI) natural cycle:**
 - 4-5% per cycle
- **IUI with ovarian stimulation:**
 - 15-20% per cycle, but with multiple pregnancy risk
- **IVF and single embryo transfer:**
 - 50% per oocyte collection (fresh and frozen combined)
IVF

- Ovarian stimulation
- Oocyte collection
- Embryo transfer
IVF patient journey

Initial consultation and tests
Nurse interview and trial wash

Ovarian stimulation
- *self administered*
Intermittent monitoring

2 weeks

Oocyte collection and embryo transfer

5 days

[Images of medical processes and patients]
Oocyte collection
“Routine” IVF insemination
ICSI (intra cytoplasmic sperm injection)

Ovarian stimulation

Egg pick-up

Sperm

Incubator

Embryo transfer

Cryostore

Excess embryos
Embryo development

Day 1

Day 3

Day 5 = blastocyst

Day 4
Cumulative success rate

- Per one round of ovarian stimulation, there are potentially multiple opportunities to conceive
- The average stimulation cycle yields 2 – 4 blastocysts
- Frozen transfers are usually undertaken in a natural ovulation cycle
- Some couples have more than one successful pregnancy for one oocyte collection
Vitrification of embryos

- Vitrification of embryos at day 5 does not reduce the chance of implantation.
- Compared to traditional “fresh” transfer, transferring a vitrified-warmed embryo into a natural ovulation cycle:
 - Is at least equivalent in terms of implantation chance.
 - May lead to less placentation anomalies and blastogenesis abnormalities.

Healy 2011
Cumulative live birth / OPU

First OPU at Genea 1 July 2009 - 31 December 2009
Assessed at late 2011
Final cumulative live birth rate / OPU – 1 or 2 to transfer?

<table>
<thead>
<tr>
<th></th>
<th>Initial single ET</th>
<th>Initial double ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>121</td>
<td>285</td>
</tr>
<tr>
<td>Total live birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pregnancies</td>
<td>79 (65.2%)</td>
<td>185 (64.9%)</td>
</tr>
<tr>
<td>Total live birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>multiple pregnancies</td>
<td>7 (8.8%)</td>
<td>78 (42%)</td>
</tr>
</tbody>
</table>
Single embryo transfer and success rates, Australia

Perinatal mortality (PMR) is reduced through SET:

- PMR for DET: 19.1 / 1000
- PMR for SET: 13.1 / 1000
- PMR for twins: 27.8 / 1000
- PMR for singletons: 12.4 / 1000

Sullivan and Wang ESHRE 2012
Modern IVF with blastocyst transfer & vitrification

- Will help the large majority of women under 38 years of age
- If success is to be attained, it will usually be so within three stimulation cycles
- If success is not to be attained, it is usually evident within three stimulation cycles
- Aids resolution, for better or worse
IVF will not be successful:

- In women with persistently elevated FSH, irrespective of age
- In women 45 years of age or older, irrespective of cycles
- Both groups will likely only conceive through oocyte donation
Variants of assisted conception

- **Donor gametes**
 - Sperm – very little needed in heterosexual couples
 - Eggs – commonly used esp for older women
 - Now non-anonymous & altruistic

- **Embryo donation**
 - Not common

- **Surrogacy**
 - True medical indications are narrow – no uterus, serious maternal medical disease or *true* implantation disorder
Blastocyst biopsy–preimplantation genetic diagnosis (PGD)
Embryo development in PGD cycle

- **Oocyte**
- **Day 2 stage**
- **Day 3 stage**
 - Assisted hatching
- **Day 4 stage**
- **Embryo biopsy**
Applications of PGD

- Prevention of genetic disease
 - DNA mutational screening (PCR), whole chromosome assessment
- Miscarriage prevention in cases of balanced translocation
- Aneuploidy screening
 - Recurrent IVF failure
 - First line IVF?
- Miscarriage management
 - Exclusion of random aneuploidy
Cell

- Nucleus
- Mitochondrion

Pairs of Chromosomes in a Human Cell

DNA Double Helix

- Strands
- Phosphate
- Hydrogen bonds
- Base pairs:
 - Cytosine
 - Guanine
- Sugar
- Base pairs:
 - Thymine
 - Adenine

Genea
WORLD LEADING FERTILITY
Polymerase Chain Reaction (PCR)

- Basic technique of DNA amplification
- Whole genome amplification for array CGH, or
- Locus-specific DNA for single gene analyses
Micro array analysis

- 60,000 points on chromosomes measured (oligonucleotides)
- 8 sub arrays = 8 embryos per slide
- embryo karyotypes
Frozen embryos - CGH

Frozen - CGH Only - 2011, 2012

- <30 [23]: 65.2%
- 30-34 [29]: 51.7%
- 35-37 [63]: 55.6%
- 38-39 [48]: 39.6%
- 40-42 [39]: 53.8%
- 43+ [6]: 66.7%
Summary

• Infertility is a common and distressing problem.
• Whilst specific treatments are applicable in some circumstances, IVF is commonly undertaken given its higher return.
• Cumulative outcomes from IVF are improved through the use of frozen (vitrified) embryos.
• Genetic testing of embryos (PGD) gives the opportunity to help both specific problems within fertility treatment and to aid in prevention of the passage of genetic disease.